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Summary. Consider the problem of estimating the mean of a population in a nonparametric
framework. Assume that we can rank all of the observations but we are aloud to measure only
n of them. In this paper we introduce new sampling algorithms using antithetic variables. We
propose unbiased estimators which reduce the variance in comparison with the ranked set sampling

estimator. Theoretical results and numerical comparisons are included.

Keywords: Antithetic sampling; Ranked set sampling.

1 Introduction

In most sampling surveys, a reasonable number of the sampling units can be fairly accurately
ordered with respect to a variable of interest without actual measurement and at little cost. On
the other hand, exact measurements of these units may be very tedious and/or expensive. For
example, for environmental risks such as radiation (soil contamination, disease clusters) or pollution
(water contamination, root disease of crops) we commonly find that exact measurements involves
substantial scientific processing of materials and correspondingly high attendant cost, while the
variable of interest from the experimental (sampling) units can easily be ranked. Ranked set
sampling, as proposed by Mclntyre (1952) in estimating the mean of the pasture yields, provides
an interesting alternative to simple random sampling in these situations.

Compared to simple random sampling, ranked set sampling has been proven theoretically (e.g.,

Takahasi and Wakimoto, 1968) and shown empirically (see, Kaur et al., 1995 and Chen et al., 2004
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for more details) to yield more precise estimator of the population mean. This is especially useful
for small surveys or for situations where it is expensive or destructive to obtain data.

Since the pioneering articles of Mclntyre (1952) and Takahasi and Wakimoto (1968) several
variations of ranked set sampling method has been proposed and developed by researchers to
come up with more efficient estimators of a population mean. For example, Samawi et al. (1996)
introduced extreme ranked set sampling and obtained an unbiased estimator of the mean which
outperforms the usual mean of a simple random sample of the same size for symmetric distributions.
Muttlak (1997) suggested median ranked set sampling to increase the efficiency and to reduce
ranking errors over ranked set sampling method and proved its better performance in estimating
the mean of a variable of interest for some symmetric distributions. Some relevant references
here, in addition to those mentioned above, are among others: Bhoj (1997) for a new parametric
ranked set sampling, Li et al. (1999) for random selection in ranked set sampling, Hossain and
Muttlak (1999) for paired ranked set sampling, Al-Saleh and Al-Kadiri (2000) for double ranked set
sampling, Hossain and Muttlak (2001) for selected ranked set sampling and Al-Saleh and Al-Omari
(2002) for multistage ranked set sampling. Al-Nasser (2007) introduced L-Ranked set sampling
design as a generalization of some of the above mentioned ranked set type sampling methods and
proved the optimal property of his proposed estimators for symmetric family of distributions.

A review of these articles reveals that most of them concentrate mainly on situations where
specific assumptions are made concerning the parent distribution of the underlying population and
the proposed estimators are beneficiated from those assumptions to provide their optimal properties
such as unbiasedness or having smaller variance.

The aim of this paper is to propose better estimators than [ir, the ranked set sampling estimator,
under the assumption that we can rank the observations before measurements, in a completely non
parametric basis and without making any assumption about the distribution of the underlying
population. The organization of the remaining sections is as follows. In Section 2, we introduce a
new estimator, [i4, of the population mean called the antithetic estimator, based on a new proposed
ranked set type sampling method. We show that our estimator is unbiased and we derive an explicit
expression for its variance. It is then proved that 14 dominates jig, the simple random sampling
estimator, by a direct comparison of the variances. However, it is not clear how to handle the

comparisons of the variances between the i and 14 based simply on a direct calculation. In



Section 3, we introduce a class of random estimators. The main idea is conditioning on the order
statistics. It is interesting to see that fig and fip are now viewed as random estimators. A general
dominance result leading to a sufficient condition (see Theorem 3.1), which we believe is novel, for a
random estimator fi; to dominate another random estimator fio is established. This method works
for showing that 14 dominates fig. Similarly, we show that ji4 dominates jir when the sample size
is equal to two. Finally, in Section 4, we propose a better estimator than fip for all sample sizes.

A simulation study is carried out in Section 5.

2 The antithetic estimator

Consider X7,..., X, as a simple random sample of size n? from a distribution with mean p and
finite variance o2 with X@)s---»X(n2) as its corresponding order statistics. Let X;; = Xp;1)4;
and define X(;;) = X(n(i—1)4j)> 4 = 1,...,n, be the n(i — 1) +j th order statistics in the sample of
size n?. Also, we define Xi(j) to be the j th order statistics based on Xi1,...,Xin, 1,7 =1,...,n.

We adopt the following notations in the rest of the paper:
1 1 1 ..
j i ij

n = E[Xl], 0'2 = Var[Xl], Nl(i) = E[Xl(z)], U%(z) = Var[Xl(i)], 1= 1, N N
nij) = EXapl,  ney =EXa)], wep =EXpl pe)y=EXo) di=1...,n
a%ij) = Var[X(;j], 0(22-,) = Var[X(;,)], 0(2,3») = Var[X ;] 0(2,,) = Var[X(,y], 4,j=1,...,n

For estimating the population mean u, let fig be the mean of a simple random sample of size n,

ie., {Xia1),---,Xi(n)}, which is given by

1L
fis = ;Xm)- (1)



with E[fig] = 1 and Var|jig]| = %2 Also, let [ip be the mean of a ranked set sample of size n, i.e.,

{Xi0)s- -+ Xy}, from the underlying population as

N RS
fin = > X, (2)
i=1

It is shown that (e.g., Takahasi and Wakimoto, 1968; Dell, 1969; Dell and Clutter, 1972), E[ir] = u

with
o? 1 —
Var[iig] = o n2 Z(M(i) - (3)
i=1
Let m = {m1,...,m,} be a random permutation of {1,...,n} independent of the sample and select
{X(lm), o X (mn)} as a new ranked set type sample called the antithetic sample. For estimating

the population mean, based on the antithetic sample, we propose the following estimator

n

. 1
fia = > Ximy- (4)
i=1

Some basic properties of jis are given in Theorem 2.1.

Theorem 2.1 Let jiq be the antithetic estimator defined in (4) and fis be the sample mean of
a simple random sample of the same size as in (1). Then, fia is an unbiased estimator of the

population mean u and

2

2 2 1 o

o R o 2 3 2 2 2 2
) < Varljia] = —t oy} 20° — ;{O’(k.) + ey = )"+ 00 + (k) — 1)} < g

Proof. Let Yj; = X(;;) — p. ConsiderP, the class of all permutations on {1,...,n}. We obtain

nEs - p] = B Vie

TEP i
1
= E[EZY”C]
ik
= nE[X — ]

= 0.



Furthermore, to obtain Var(fi4), we have

nQVar(,&A) = — Z E[ {Z Yir, }

" mEP
- EZE[ZY;- + > YirYin)]
" mep i Z#J
= E[%Z 2k+ ZZszYﬂ
ik 2753 k#L
= E[%Z 2k+ {Zszng > YV - ZYmYZHZ
ik ijke ijk ikl

_ E[%ZYM Zm —Z(Zm)z—z Zm +Z 73]
- zm RS RS RSN

= E[n%Y?+ (n_ 5 Z{Yik—Y.k—Yi.+y.} ]
ik
= o2+ (nil)E[Z{Yij Y, - Y; +Y.}

ij

2 1 2 2 2 2 2
= ST > oty —ofy = oty + oty + {nag) = ray = ey + e ¥l
i

- i ) [(n + 1)o? — Z{U(Zk~) + (tey — 1> + 0 gy + (e — )2},
k

which leads to the result. In particular, note that

[\

o2 1

o
Var(pa) = 2 + ————
ar(fia) 2t n?(n—1)

ED {Yy - Yi-Y; Y >

ij

In order to show that Var(fia) < % we will verify that

Z{m—yk—y +Y}2<—Z{m—y}

n—l

and use the fact that

Var(Z{Yik —-Y.1?) = Var(Z(Xi - X)H) = (n? - 1)
ik

i



First of all, if oy <--- < @, and B <--- < 3, then ), (ax — @)(Br — ) > 0. This implies that

YZ—Y; Yk'—Yk. 20, i,k:1,...,n,
J J

J

and

> Vi = i) (Vi = V) 20, i,j=1,...,n.
!

Notice also that a; < as and by < by implies that (ay + b1)? + (az + b2)? > (ay + b2)? + (ag + b1)2.
Similarly, if Z; < .-+ < Z,2 then (Zl + o+ Zn)2 + ot (Zn(n—l)—I—l 4+ 4+ Zn(n—1)+n)2 >
(Zmy 4o 4 2] o 4 (2

Tn(n—1)+1

+--+Z )2 for all permutation 7 = {7,...,7,} € P.

n(n—1)4+n

This is useful to show that

> (¥, - Vi)

ij

D Yi-nd v
© Yy
ij j
= D (Y- Yy~

ij



Finally,

B SRS PR8I ) 3 (ORTS 20T
j - %Z(xf;—w
ij
_ﬁ[n;(yj ~V.)% - ZZ(YU ~Y3)%
_ %Z(Yij—m; |
n_l Z{Z Vi = Yol = 3 (Vs = Yi)’]
:%Zmrnf ]
ij
Z{Z (Yij — Yi)(Yij — Yi)}]
i itk

1
=52mrnf
%]

n_lzéﬁ@Y’m Vi)

i#k  J
< LYW
ij
< Y YR S - V)
ij i
(S = Vil S — V)
ij i
oy 2 (S0 Vi) (i = V)
itj  k
1 1
- n—i—l[z( EZ{Z “
= nil[ZY,] Y;) +ZY ~Y.)
ij
1
- n+1%:(}gj—Y)2

We conclude this section with an application of the obtained results to the special case of the

uniform distribution because here the variances have very simple forms.
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Example 2.1 Consider a U(0,1) population of size n. Here, 0° = 1—12,

i i(n?—j+1) o,
EX @] = =1 and  Cov(X(;), X(;)) = CESETES 1<i<j<n?
SO
~ _ 1 2 ~ . 2 2 R . Tl2 +5 9
Va""(/,ts) - na ’ V(IT(/LR) - n(n + 1)0 9 V(IT’(/I/A) - (n2 n 1)(7’1,2 + 2)0 .

foiad

%5 is a lower bound for Var(fia). Also, it is shown

We have already shown, in Theorem 2.1, that

o2

(see Theorem 3.1) that, % is a lower bound for Var(fir) as well. Therefore we can analyse how
much do we lose in comparison to the lower bound %; by using 14 or fir in estimating the population

mean p = %. For the U(0,1) distribution

R n—1
(n? Var(jig) = %) = "— = O(1),
while
. B (n? —1) 1

3 A special class of random estimators

In this section we propose a class of random estimators of the mean and develop a general
dominance result leading to a sufficient condition for a random estimator fi; to dominate another
random estimator jio. Our treatment permits consideration of a more general type of estimators
than that discussed in the preceding section and includes the estimators fig, fir and 14 as special

cases. We are concern with random estimators fi that can be written in the form

n2

.1
N:EZIJ'X()% (5)
j=1
where I1,...,1,2 are Bernoulli(%) random variables, independent of X(y),..., X(,2), satisfying the

regularity condition zyil I; = n. In the above representation of the random estimator [ the

inclusion probabilities of the first and second orders are given by p; = E[[;] = % and p;; = E[L;1}],

i,j =1,...,n?% respectively. In particular, we have Cov(I;, I;) = p,-j—# and 2?221 Pij = Z;Lil Pij =



Remark 3.1 Let Ry,...,R,2 be the rank statistics corresponding to the sample X1,...,X,2 and
assume that the ties are broken randomly. The rank statistics are independent of Xy, ..., X(n2)-

Therefore, the construction of the random wvariables I1,. .., 1,2 could involve the rank statistics.

Example 3.1 (Simple Random Sampling). The estimator [is as in (1), corresponding to a simple
random sample of size n from the underlying population, is in the form of (5) with Bernoulli

random variables given by

1 ifje{Ri:i=1...,n}

0 otherwise

andpij:m,1§i<j§n2.

Example 3.2 (Ranked Set Sampling). Let {R;q): k = 1,...,n} be the order statistics based on
{Riyp: k=1,...,n},i=1,...,n. The estimator fir as in (2), corresponding to a ranked set sample
of size n from the underlying population, is in the form of (5) with Bernoulli random variables

given by
1 ifje{Ryp:i=1....n
I = Rig J =102
0 otherwise

To obtain the corresponding probability of inclusion of the second order, consider a ranked set

sampling algorithm with n = 2. There are siz ways to put {X(l), . ,X(4)} i two rows which are,
Xa)y X Xay X Xy X
Xy X Xy X Xy X3
Xy X Xy X X)) X
Xay Xq Xa)y X Xy X

leading to the following selections, (X(1y, X (1)), (X(1), X(4)), (X), X(3)), (X2), X(a))5 (X(2), X3));

4)
(X(2), X(3))- Therefore, p12 =0, p13 = %, D14 = %, D23 = %, Do = % and p3y = 0. Forn > 2 finding

the p;j is a combinatorics problem which leads to the general solution

1 i A
Dij = —5— - 75
n 1 (n—l nn—l n(n—2))

], 1<i<j<n?

9



with
- i—1\[(j—i—1\(n? =\ [(F—L—1\[nn—1)+0—j
D D (Y [ (R | ) [ (R |
1<k<t<n

Example 3.3 (Antithetic Sampling). Let m = {my,...,m,} be a random permutation on {1,...,n}.
The antithetic estimator i as in (4) is in the form of (5) and the corresponding Bernoulli random

variables are given by

1 ifje{n(i—1)+m:i=1...,n}
0 otherwise
with
0 if[L] = f%} and i Z j (mod n)
Pij = 0 if[i#4[L) andi=j (modn) , 1<i<j<n’
s U [E1# (2] and i # j (mod n)
We pursue with a Theorem and a Corollary regarding to the properties of the random estimators

i as in (5); the latter one giving simple and general sufficient condition for dominance results.

Theorem 3.1 The random estimator fi as in (5) is unbiased, in estimating the population mean

W, with
—1n%2-1 o2
ol = 1o+ S5 my s = 0
=1 j=1
where
i J i J
Tij = CO’U[ I, Z Z Pre — — and S; = X(z-i—l) X(z)7 ,5=1,... ,n2 — 1.
k=1 (=1 =1¢=1
Proof. The expectation of [ is given by
Ela] = E[E[@aXq), .-, X@n2)ll
= E[X]

10



To obtain the variance of [i, we have

Var[a] = Var[E[a|Xq),..., X2l + E[Var[i| Xy, .., Xp2)]]
2 2
_ 1 n n 1
= VarlX]+ —ED Y (pi — )X X))
i=1 j=1

v

and the inequality holds because Var[ji] — %; = E[Var[i| X1y, ..., X(n2)]] > 0.

Corollary 3.2 If i and fi* are two random estimators, in the form of (5), such that 7;; > 75 for

alli,7 =1,...,n% —1; then Var[j] > Var|p*].

Proof. The proof is based on the fact that S; > 0 fori=1,...,n? — 1.

We pursue with various applications of the above results.

Example 3.4 In this ezample we provide a new proof for superiority of fia over jig in estimating
the population mean in the spirit of Corollary 3.2. By virtue of Corollary 3.2, we only need to obtain
Taij and Tg;; corresponding to fia and fis and show that Ta;; < Ts;j for all 1,5 =1,... ,n%—1. Let

11 = [51722 :Z_n(ZI _1)7

. 74 . . .
J1= (;1732 =j—n(j —1).

We obtain

(n i) -15),

TSij:n—l—l

L (i2 A j2)(n — (i2 V ja)) if i1 =01
TAij =
—m% Njo)(n—(iaV j2)) if i1 <j1

11



When 1 < i1 < j1 <n we have T4;; <0 < 7g;5. Assume that i1 = j1. In this case

1

i = D+ (2 A )l — i) + (0 — (2 V j2))]

Tsij =
If iy > (i2 A jo) then [n(iy — 1) + (i2 A j2)] > (n+ 1)(i2 A j2), and
[(n —i1) + (n = (i V j2))] = (n = (i2 V j2))-
So 7sij > Tag. If iv < (i2 A jo) then [n(n —i1) + (n — (i2 V j2))] = (n+ 1)(n — (i2 V j2)), and
[n(in = 1) + (@2 A j2)] 2 (i2 A o).

So Tsij > Taij. Therefore, Ts;; > Taij for all1 <i<j < n? —1.

In the reminding of this section, we discuss the problem of superiority of the antithetic sampling
over the ranked set sampling in estimating the population mean. First, the following Example
highlights the attractive feature of {14 in dominating fig for n = 2. As we see in the next section,
this latter property of f14 leads us to introduce a new variation of the ranked set sampling and

correspondingly a new estimator, fiy/, which outperforms jig.

Example 3.5 . Ifn =2 then
N . 1
Var[uR]X(l), oo ,X(4)] - Var[uA\X(l), . o ,X(4)] = —[(X(g) - X(l))(X(4) - X(g))] Z 0.

24

In the following two Examples we consider the performance of [i4 in comparison with fip for

n=3and n=4. Let T = (7;5); j=1,..n2—1. Note that for all n > 2 we have

(Tr —Ta)ij = (T —Ta)ji = (Th — Ta)n2—in2_j» i, =1,....,n* = 1.

12



Example 3.6 . For n =3, the comparison between 14 and fir leads to

0 0 357 1012 238 —3.57 833 417
0 0 1071 833 905 —429 119 833
357 1071 2143 10.71 286 —214 —4.29 —3.57
1012 833 1071 0 0 28 905 2.38
100(Tx — Ta) =
238 9.05 286 0 0 1071 833 10.12
—357 —4.29 —2.14 286 10.71 21.43 10.71 3.57

833 119 —-4.29 9.05 833 10.71 0 0

417 833 —3.57 238 10.12 3.57 0 0

In particular,

Z (Trij — Taij)SiS; — —oo when S =1 and S; — oo.
i,je{1,6}

Therefore, at this point, we cannot claim that Var{fia] < Var{ir] for n = 3. On the other hand,

for Bernoulli(p) trials, S;S; =0 if i # j and

n2-1
.1 DPq . . 2 2
Var{i] = 2 + kg_l Trk P[Binomial(n®,p) = n* — k + 1].
We obtain that
Varlfig) — Var(fial 3 x0.2143 _ . : .
- = ———{P|Binomial(9,p) = 3] + P|Binomial(9,p) = 6
o L {PlBinomial(9.p) = 3]+ PlBinomial(9,p) = 6]

= 54(pg)*(1 — 3pq).

In this application we see that (pq)*(1 — 3pq) reaches its mazimum when p = % and p = %

13



Example 3.7 . For n =4, the comparison between 14 and fir leads to

0 0 143 407 771 385 064 —2.05
0 0 429 1033 9.56 10.09 3,38 —2.42
143 429 857 1857 13.61 10.17 810 —1.12
4.07 10.33 18.57 28.57 19.60 1222 6.34 1.86
771 956 13.61 19.60 10.62 7.71 6.34 6.48
3.85 10.09 10.17 1222 7.1 480 799 12.73
064 338 810 634 634 799 11.19 20.57
100(Tr —Ta)i=1,..154=1,..8 = | —2.06 —242 —1.12 1.86 6.48 12.73 20.57 29.96
397 084 —-097 -—-136 806 10.68 14.84 20.57
194 468 0.06 -—-343 266 10.11 10.68 12.73
0.09 0.63 1.82 —-449 -148 266 8.06 6.48
-1.65 —-3.10 —4.17 —4.68 —-449 -343 -1.36 1.86
5.00 172 -—-138 —4.17 182 6.32 -0.97 -1.12
333  6.67 1.72 =310 6.33 468 839 —242

1.67v 333 500 -1.65 0.09 194 397 —-2.05

Here again, Tri; > Tai fori=1,...,15. Therefore, Var(fir) > Var(fia) for Bernoulli(p) trials.

4 A variation of ranked set sampling

In this section, following the optimal property of {14 in dominating fip for n = 2, explored
in Example 3.5, we introduce another variation of the ranked set sampling and correspondingly
another estimator of the population mean called iy, which outperforms fip. In fact, when n = 2,

n

fiy is the antithetic estimator. Let m; = [§] and ma = [§]. To construct iy we start with a

useful representation of the ranked set sampling estimator fir. Note that fig in (2) can be written

14



as follows

nip = ZXi(i)
i=1

ot (Xioey + Xigma (ktma))
bt (Xk(k) + Xgma (ktma)) + Ximg(ms)

Or equivalently

with Zp, = (Xy) + Xbtms ktma)); E=1,...,

with
(Xkk) N Xty (k) +
Vi =
(Xi(r) V Xktma k) +
and Vi, = X, (my) i 1 i even.

if n is even

if n is odd
1 2
=2 2
k=1
1 &
ﬂV = E ZVk7
k=1

(Xk (ktms) V Xtmo (k+ms)) With probatility

(Xk (k+mz) Xhtma (k-i—mg)) with probatility

[T I

(6)

mq. Now, we define our new proposed estimator as

(7)

We now are ready to pursue with the following key Theorem of this section regarding to the

optimal properties of jiyy such as its superiority over jig in estimating the population mean.

Theorem 4.1 The estimator iy as in (7) is an unbiased estimator of the population mean and

Var(foy) < Var(fig).

Proof. First of all, note that

Similarly

15



Let 1 < /1 < #5 < n, and define

Xy (e0) N Xeaer) + Xey(ea) V Xey(e,) With probatility
Z= Xfl(fl) + XZQ(ZQ) V= 1h) 2(61) 1(£2) 2(£2)

[T ST

le(zl) V XZ2(£1) + Xf1(€2) N Xg2(52) with probatility
Now, consider the event A;jj, 1 <i<j<k<I< n?, given by
{Re (01, Bey(02)s Reo(01)> Ry (o)} = 18,3, k5 1},

and assume that (4, j, k,1) is such that P[A;;;] > 0. When the event A;j;; occurs it implies that
(Rzl(gl) A RZ2(£2)’ Rgl(fl) \% sz(fz)) € {(Z, l)7 (]7 k)7 (17 ]‘J), (]7 l)}

Since ((R51(51)7 Rfl(fz))7 (RZQ(Zl)’ RZQ(fz))) and ((RZZ(ZI)’ R52(52))7 (RZI(Zl)’ RZI(ZQ))) have the same dis-

tribution we obtain that

P[(Re, (e) ARy (t2)> By (00)V Res ) = (05 D[ Aijra] = P(Rey00)ANRes (02> By (0)V Rey(e2)) = (G, k) Aijnal -
Similarly

Pl(Ry, (6,)ANRuy(0)s Rey (01)V Ria(0)) = (4, K) | Aijra] = Pl(Rey (01) NRey(0)s By (01)V Rey(02)) = (05 DI Aijral-

Let

Qijkl = P[(Rh(ﬁ) N R€2(€2)7R€1(€1) v Rﬁz(ﬁz)) € {(Z, k)? (]7l)}‘AUkl]7

Xy + X)) + Xy + X
Mijkl = 5 .

16



Conditionally on the event A;j;; we obtain that

Xy + X  with probability w

) X+ Xay  with probability (o) y_ ) Xo+Xq  with probability 3
X))+ X  with probability % Xy + X  with probability %
Xy + X@  with probability %

Now,

E[Z|Aiji] = tijrr = E[V]Aijii),

establishing the unbiasedness of fi1. Finally,

Var(Z|Aiju] = (X + Xy — page)* (1= i) + (Xoy + Xy — paigit)* g
gkl
5 (X = X)X — X)

(X)) — X)) (X — Xwy)

2

= (X@) + Xy — pijr)” +

ikl

— Var[V|Ayu] + 2

J

2 Var[V]Aijkl].

5 Simulation study

In this section, we carry out a simulation study to compare numerically the performance of the
proposed estimators fi4 and fiyy with that of fig. It has already been established, in Theorem (3.1),
that Z—; is a lower bound for the variances of all these estimators. The aim is to reduce, as much
as possible, the gap between the variance of the proposed estimators and the lower bound %; For
this reason, given a distribution P and a sample size n, the comparison between an estimator [

and fip will be based on the measure R, given by

2

Varp(fi) — %

Rn(P, 1) = A :
Varp(fir) — Z—z

In our simulation study we worked on four underlying distributions: the standard normal distribu-
tion A/(0, 1), the exponential distribution Ezp(1), the uniform distribution ¢/(0,1), and the Poisson

distribution Poisson(1).
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Figure 1: Simulated values of R, (P, i) for considered distributions: (a) R, (P, fiy) (b) Rn(P, fia).

For a given sample size n, n € {2,...30}, and a given distribution P, Figure 1 displays the
simulated values of R, (P, f14) and R, (P, fiy) based on one million iterations for the considered
distributions. The simulations show that R, (P, fiy) varies a little bit with n for small values of n
and becomes more stable when n gets larger. Overall, the gab between Varp(ig) and Z—; has been
reduced by a factor of at least 10% using iy .

On the other hand, the simulations indicate that fi4 is always the best estimator. The theory
tells us that Ro(P, 14) <1 for all P. Moreover, the simulations indicate that R, (P, fi4) decreases
in n when P is fixed. This behavior has been observed in all of the other simulations that we have

conducted so far. Perhaps R, (P,ji4) <1 for all P, n > 1.

References

Al-Nasser, A.D. (2007) L-Ranked Set Sampling: A Generalization Procedure For Robust

Visual Sampling. Communications in Statistics: Theory and Methods, 36, 33—43.

Al-Saleh, M.F. and Al-Omari, A. (2002) Multistage Ranked Set Sampling. Journal of

Statistical Planning and Inference , 102, 273—-286.

Al-Saleh, M.F. and Al-Kadiri, M.A. (2000) Double Ranked Set Sampling. Statistics &
Probability Letters, 48, 205-212.

18




Bhoj, D.S. (1997) New Parametric Ranked Set Sampling. Journal of Applied Statistical
Science, 6 , 275—-289.

Chen, Z., Bai, Z.D., and Sinha, B.K. (2004) Ranked Set Sampling: Theory and Applications.

Lecture Notes in Statistics, 176, Springer—Verlag, New York.

Dell, T.R. (1969) The Theory of Some Applications of Ranked Set Sampling. Ph.D. Thesis,

University of Georgia, Athens, GA.

Dell, T.R. and Clutter, J.L. (1972) Ranked Set Sampling With Order Statistics Background.
Biometrics, 28, 545-553.

Hossain, S.S. and Muttlak, H.A. (1999) Paired Ranked Set Sampling: A More Efficient

Procedure. Environmetrics, 10, 195-212.

Hossain, S.S. and Muttlak, H.A. (2001) Selected Ranked Set Sampling. Australian & New

Zealand Journal of Statistics, 43, 311-325.

Kaur, A., Patil, G.P., Sinha, A.K., and Taillie, C. (1995) Ranked Set Sampling: An Anno-

tated Bibliography. Environmental and Ecological Statistics, 2, 25-54.

Li., D., Sinha, B.K., and Perron, F. (1999) Random Selection in Ranked Set Sampling and

Its Applications. Journal of Statistical Planning and Inference, 76, 185-201.

Mclntyre, G.A. (1952) A Method for Unbiased Selective Sampling, Using Ranked Sets.

Australian Journal of Agricultural Research, 3, 385-390.

Mutllak, H.A. (1997) Median Ranked Set Sampling. Journal of Applied Statistical Science,
6, 245-255.

Samawi, H., Abu-Daayeh, H.A., and Ahmed, S. (1996) Estimating the Population Mean

Using Extreme Ranked Set Sampling. Biometrical Journal, 38, 577-586.

Takahasi, K. and Wakimoto, K. (1968) On Unbiased Estimates of the Population Mean
Based on the Sample Stratified by Means of Ordering. Annals of the Institute of Statistical

Mathematics, 20, 1-31.

19



