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Summary. Consider the problem of estimating the mean of a population in a nonparametric

framework. Assume that we can rank all of the observations but we are aloud to measure only

n of them. In this paper we introduce new sampling algorithms using antithetic variables. We

propose unbiased estimators which reduce the variance in comparison with the ranked set sampling

estimator. Theoretical results and numerical comparisons are included.
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1 Introduction

In most sampling surveys, a reasonable number of the sampling units can be fairly accurately

ordered with respect to a variable of interest without actual measurement and at little cost. On

the other hand, exact measurements of these units may be very tedious and/or expensive. For

example, for environmental risks such as radiation (soil contamination, disease clusters) or pollution

(water contamination, root disease of crops) we commonly find that exact measurements involves

substantial scientific processing of materials and correspondingly high attendant cost, while the

variable of interest from the experimental (sampling) units can easily be ranked. Ranked set

sampling, as proposed by McIntyre (1952) in estimating the mean of the pasture yields, provides

an interesting alternative to simple random sampling in these situations.

Compared to simple random sampling, ranked set sampling has been proven theoretically (e.g.,

Takahasi and Wakimoto, 1968) and shown empirically (see, Kaur et al., 1995 and Chen et al., 2004
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for more details) to yield more precise estimator of the population mean. This is especially useful

for small surveys or for situations where it is expensive or destructive to obtain data.

Since the pioneering articles of McIntyre (1952) and Takahasi and Wakimoto (1968) several

variations of ranked set sampling method has been proposed and developed by researchers to

come up with more efficient estimators of a population mean. For example, Samawi et al. (1996)

introduced extreme ranked set sampling and obtained an unbiased estimator of the mean which

outperforms the usual mean of a simple random sample of the same size for symmetric distributions.

Muttlak (1997) suggested median ranked set sampling to increase the efficiency and to reduce

ranking errors over ranked set sampling method and proved its better performance in estimating

the mean of a variable of interest for some symmetric distributions. Some relevant references

here, in addition to those mentioned above, are among others: Bhoj (1997) for a new parametric

ranked set sampling, Li et al. (1999) for random selection in ranked set sampling, Hossain and

Muttlak (1999) for paired ranked set sampling, Al-Saleh and Al-Kadiri (2000) for double ranked set

sampling, Hossain and Muttlak (2001) for selected ranked set sampling and Al-Saleh and Al-Omari

(2002) for multistage ranked set sampling. Al-Nasser (2007) introduced L-Ranked set sampling

design as a generalization of some of the above mentioned ranked set type sampling methods and

proved the optimal property of his proposed estimators for symmetric family of distributions.

A review of these articles reveals that most of them concentrate mainly on situations where

specific assumptions are made concerning the parent distribution of the underlying population and

the proposed estimators are beneficiated from those assumptions to provide their optimal properties

such as unbiasedness or having smaller variance.

The aim of this paper is to propose better estimators than µ̂R, the ranked set sampling estimator,

under the assumption that we can rank the observations before measurements, in a completely non

parametric basis and without making any assumption about the distribution of the underlying

population. The organization of the remaining sections is as follows. In Section 2, we introduce a

new estimator, µ̂A, of the population mean called the antithetic estimator, based on a new proposed

ranked set type sampling method. We show that our estimator is unbiased and we derive an explicit

expression for its variance. It is then proved that µ̂A dominates µ̂S , the simple random sampling

estimator, by a direct comparison of the variances. However, it is not clear how to handle the

comparisons of the variances between the µ̂R and µ̂A based simply on a direct calculation. In
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Section 3, we introduce a class of random estimators. The main idea is conditioning on the order

statistics. It is interesting to see that µ̂S and µ̂R are now viewed as random estimators. A general

dominance result leading to a sufficient condition (see Theorem 3.1), which we believe is novel, for a

random estimator µ̂1 to dominate another random estimator µ̂2 is established. This method works

for showing that µ̂A dominates µ̂S. Similarly, we show that µ̂A dominates µ̂R when the sample size

is equal to two. Finally, in Section 4, we propose a better estimator than µ̂R for all sample sizes.

A simulation study is carried out in Section 5.

2 The antithetic estimator

Consider X1, . . . ,Xn2 as a simple random sample of size n2 from a distribution with mean µ and

finite variance σ2 with X(1), . . . ,X(n2) as its corresponding order statistics. Let Xij = Xn(i−1)+j

and define X(ij) = X(n(i−1)+j), i, j = 1, . . . , n, be the n(i−1)+ j th order statistics in the sample of

size n2. Also, we define Xi(j) to be the j th order statistics based on Xi1, . . . ,Xin, i, j = 1, . . . , n.

We adopt the following notations in the rest of the paper:

X(i·) =
1

n

∑

j

X(ij), X(·j) =
1

n

∑

i

X(ij), X(··) =
1

n2

∑

ij

X(ij), i, j = 1, . . . , n.

µ = E[X1], σ2 = Var[X1], µ1(i) = E[X1(i)], σ2
1(i) = Var[X1(i)], i = 1, . . . , n.

µ(ij) = E[X(ij)], µ(i·) = E[X(i·)], µ(·j) = E[X(·j)], µ(··) = E[X(··)], i, j = 1, . . . , n.

σ2
(ij) = Var[X(ij)], σ2

(i·) = Var[X(i·)], σ2
(·j) = Var[X(·j)], σ2

(··) = Var[X(··)], i, j = 1, . . . , n.

For estimating the population mean µ, let µ̂S be the mean of a simple random sample of size n,

i.e., {X1(1), . . . ,X1(n)}, which is given by

µ̂S =
1

n

n
∑

i=1

X1(i). (1)
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with E[µ̂S ] = µ and Var[µ̂S ] = σ2

n
. Also, let µ̂R be the mean of a ranked set sample of size n, i.e.,

{X1(1), . . . ,Xn(n)}, from the underlying population as

µ̂R =
1

n

n
∑

i=1

Xi(i). (2)

It is shown that (e.g., Takahasi and Wakimoto, 1968; Dell, 1969; Dell and Clutter, 1972), E[µ̂R] = µ

with

Var[µ̂R] =
σ2

n
−

1

n2

n
∑

i=1

(µ1(i) − µ)2. (3)

Let π = {π1, . . . , πn} be a random permutation of {1, . . . , n} independent of the sample and select

{X(1π1), . . . ,X(nπn)} as a new ranked set type sample called the antithetic sample. For estimating

the population mean, based on the antithetic sample, we propose the following estimator

µ̂A =
1

n

n
∑

i=1

X(iπi). (4)

Some basic properties of µ̂A are given in Theorem 2.1.

Theorem 2.1 Let µ̂A be the antithetic estimator defined in (4) and µ̂S be the sample mean of

a simple random sample of the same size as in (1). Then, µ̂A is an unbiased estimator of the

population mean µ and

σ2

n2
≤ Var[µ̂A] =

σ2

n
+

1

n(n − 1)

[

2σ2 −
n

∑

k=1

{σ2
(k·) + (µ(k·) − µ)2 + σ2

(·k) + (µ(·k) − µ)2}

]

≤
σ2

n
.

Proof. Let Yij = X(ij) − µ. ConsiderP, the class of all permutations on {1, . . . , n}. We obtain

nE[µ̂A − µ] =
1

n!

∑

π∈P

E[
∑

i

Yiπi
]

= E[
1

n

∑

i k

Yik]

= nE[X̄ − µ]

= 0.
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Furthermore, to obtain Var(µ̂A), we have

n2Var(µ̂A) =
1

n!

∑

π∈P

E[{
∑

i

Yiπi
}2]

=
1

n!

∑

π∈P

E[
∑

i

Y 2
iπi

+
∑

i6=j

Yiπi
Yjπj

]

= E[
1

n

∑

i k

Y 2
ik +

1

n(n − 1)

∑

i6=j

∑

k 6=ℓ

YikYjℓ]

= E[
1

n

∑

i k

Y 2
ik +

1

n(n − 1)
{
∑

i j k ℓ

YikYjℓ −
∑

i j k

YikYjk −
∑

i k ℓ

YikYiℓ +
∑

i k

Y 2
ik}]

= E[
1

n

∑

i k

Y 2
ik +

1

n(n − 1)
{(

∑

i k

Yik)
2 −

∑

k

(
∑

i

Yik)
2 −

∑

i

(
∑

k

Yik)
2 +

∑

i k

Y 2
ik}]

= E[
1

n

∑

i k

Y 2
ik +

1

n(n − 1)
{n4Y 2

·· − n2
∑

k

Y 2
·k − n2

∑

k

Y 2
k· +

∑

i k

Y 2
ik}]

= E[n2Y 2
·· +

1

(n − 1)

∑

i k

{Yik − Y·k − Yi· + Y··}
2]

= σ2 +
1

(n − 1)
E[

∑

i j

{Yij − Yi· − Y·j + Y··}
2]

= σ2 +
1

(n − 1)

∑

i j

[{σ2
(ij) − σ2

(i·) − σ2
(·j) + σ2

(··)} + {µ(ij) − µ(i·) − µ(·j) + µ(··)}
2]

=
n

(n − 1)
[(n + 1)σ2 −

∑

k

{σ2
(k·) + (µ(k·) − µ)2 + σ2

(·k) + (µ(·k) − µ)2}],

which leads to the result. In particular, note that

Var(µ̂A) =
σ2

n2
+

1

n2(n − 1)
E[

∑

i j

{Yij − Yi· − Y·j + Y··}
2] ≥

σ2

n2
.

In order to show that Var(µ̂A) ≤ σ2

n
we will verify that

1

n − 1

∑

i k

{Yik − Y·k − Yi· + Y··}
2 ≤

1

n + 1

∑

i k

{Yik − Y··}
2,

and use the fact that

Var(
∑

i k

{Yik − Y··}
2) = Var(

∑

i

(Xi − X̄)2) = (n2 − 1)σ2.
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First of all, if α1 ≤ · · · ≤ αn and β1 ≤ · · · ≤ βn then
∑

k(αk − ᾱ)(βk − β̄) ≥ 0. This implies that

∑

j

(Yij − Yi·)(Ykj − Yk·) ≥ 0, i, k = 1, . . . , n,

and
∑

k

(Yki − Yk·)(Ykj − Yk·) ≥ 0, i, j = 1, . . . , n.

Notice also that a1 ≤ a2 and b1 ≤ b2 implies that (a1 + b1)
2 + (a2 + b2)

2 ≥ (a1 + b2)
2 + (a2 + b1)

2.

Similarly, if Z1 ≤ · · · ≤ Zn2 then (Z1 + · · · + Zn)2 + · · · + (Zn(n−1)+1 + · · · + Zn(n−1)+n)2 ≥

(Zπ1 + · · ·+ Zπn)2 + · · ·+ (Zπn(n−1)+1
+ · · ·+ Zπn(n−1)+n

)2 for all permutation π = {π1, . . . , πn} ∈ P.

This is useful to show that

∑

ij

(Yij − Yi·)
2 =

∑

ij

Y 2
ij − n

∑

i

Y 2
i·

≤
∑

ij

Y 2
ij − n

∑

j

Y 2
·j

=
∑

ij

(Yij − Y·j)
2.
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Finally,

1

n − 1

∑

i j

(Yij − Yi· − Y·j + Y··)
2 =

1

n − 1
[
∑

i j

(Yij − Yi·)
2 +

∑

i j

(Y·j − Y··)
2]

=
1

n

∑

i j

(Yij − Yi·)
2

−
1

n(n − 1)
[n

∑

i j

(Y·j − Y··)
2 −

∑

i j

(Yij − Yi·)
2]

=
1

n

∑

i j

(Yij − Yi·)
2

−
1

n(n − 1)
[
∑

j

{
∑

i

(Yij − Yi·)}
2 −

∑

i j

(Yij − Yi·)
2]

=
1

n

∑

i j

(Yij − Yi·)
2

−
1

n(n − 1)
[
∑

j

{
∑

i6=k

(Yij − Yi·)(Ykj − Yk·)}]

=
1

n

∑

i j

(Yij − Yi·)
2

−
1

n(n − 1)
[
∑

i6=k

{
∑

j

(Yij − Yi·)(Ykj − Yk·)}]

≤
1

n

∑

i j

(Yij − Yi·)
2

≤
1

n + 1
[
∑

i j

(Yij − Yi·)
2 +

1

n

∑

i j

(Yij − Y·j)
2]

≤
1

n + 1
[
∑

i j

(Yij − Yi·)
2 +

1

n

∑

i j

(Yij − Y·j)
2]

+
1

n(n + 1)

∑

i6=j

(
∑

k

(Yki − Y·i)(Ykj − Y·j))

=
1

n + 1
[
∑

i j

(Yij − Yi·)
2 +

1

n

∑

i

{
∑

j

(Yij − Y·j)}
2)]

=
1

n + 1
[
∑

i j

(Yij − Yi·)
2 +

∑

i j

(Yi· − Y··)
2]

=
1

n + 1

∑

i j

(Yij − Y··)
2.

We conclude this section with an application of the obtained results to the special case of the

uniform distribution because here the variances have very simple forms.
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Example 2.1 Consider a U(0, 1) population of size n. Here, σ2 = 1
12 ,

E[X(i)] =
i

n2 + 1
and Cov(X(i),X(j)) =

i(n2 − j + 1)

(n2 + 1)2(n2 + 2)
, 1 ≤ i ≤ j ≤ n2,

so

Var(µ̂S) =
1

n
σ2, Var(µ̂R) =

2

n(n + 1)
σ2, Var(µ̂A) =

n2 + 5

(n2 + 1)(n2 + 2)
σ2.

We have already shown, in Theorem 2.1, that σ2

n2 is a lower bound for Var(µ̂A). Also, it is shown

(see Theorem 3.1) that, σ2

n2 is a lower bound for Var(µ̂R) as well. Therefore we can analyse how

much do we lose in comparison to the lower bound σ2

n2 by using µ̂A or µ̂R in estimating the population

mean µ = 1
2 . For the U(0, 1) distribution

(n2Var(µ̂R) − σ2) =
n − 1

n + 1
= O(1),

while

(n2Var(µ̂A) − σ2) = 2
(n2 − 1)

(n2 + 1)(n2 + 2)
= O(

1

n2
).

3 A special class of random estimators

In this section we propose a class of random estimators of the mean and develop a general

dominance result leading to a sufficient condition for a random estimator µ̂1 to dominate another

random estimator µ̂2. Our treatment permits consideration of a more general type of estimators

than that discussed in the preceding section and includes the estimators µ̂S, µ̂R and µ̂A as special

cases. We are concern with random estimators µ̂ that can be written in the form

µ̂ =
1

n

n2
∑

j=1

IjX(j), (5)

where I1, . . . , In2 are Bernoulli( 1
n
) random variables, independent of X(1), . . . ,X(n2), satisfying the

regularity condition
∑n2

j=1 Ij = n. In the above representation of the random estimator µ̂ the

inclusion probabilities of the first and second orders are given by pi = E[Ii] = 1
n

and pij = E[IiIj],

i, j = 1, . . . , n2, respectively. In particular, we have Cov(Ii, Ij) = pij−
1
n2 and

∑n2

i=1 pij =
∑n2

j=1 pij =

1, i, j = 1, . . . , n2.
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Remark 3.1 Let R1, . . . , Rn2 be the rank statistics corresponding to the sample X1, . . . ,Xn2 and

assume that the ties are broken randomly. The rank statistics are independent of X(1), . . . ,X(n2).

Therefore, the construction of the random variables I1, . . . , In2 could involve the rank statistics.

Example 3.1 (Simple Random Sampling). The estimator µ̂S as in (1), corresponding to a simple

random sample of size n from the underlying population, is in the form of (5) with Bernoulli

random variables given by

Ij =











1 if j ∈ {Ri : i = 1 . . . , n}

0 otherwise
, j = 1, . . . , n2,

and pij = 1
n(n+1) , 1 ≤ i < j ≤ n2.

Example 3.2 (Ranked Set Sampling). Let {Ri(k) : k = 1, . . . , n} be the order statistics based on

{Rik : k = 1, . . . , n}, i = 1, . . . , n. The estimator µ̂R as in (2), corresponding to a ranked set sample

of size n from the underlying population, is in the form of (5) with Bernoulli random variables

given by

Ij =











1 if j ∈ {Ri(i) : i = 1 . . . , n}

0 otherwise
, j = 1, . . . , n2.

To obtain the corresponding probability of inclusion of the second order, consider a ranked set

sampling algorithm with n = 2. There are six ways to put {X(1), . . . ,X(4)} in two rows which are,







X(1) X(2)

X(3) X(4)













X(1) X(3)

X(2) X(4)













X(1) X(4)

X(2) X(3)













X(2) X(3)

X(1) X(4)













X(2) X(4)

X(1) X(3)













X(3) X(4)

X(1) X(2)







leading to the following selections, (X(1),X(4)), (X(1),X(4)), (X(1),X(3)), (X(2),X(4)), (X(2),X(3)),

(X(2),X(3)). Therefore, p12 = 0, p13 = 1
6 , p14 = 1

3 , p23 = 1
3 , p24 = 1

6 and p34 = 0. For n > 2 finding

the pij is a combinatorics problem which leads to the general solution

pij =
1

n2 − 1
[1 −

A
(

n2−2
n−1 n−1 n(n−2)

)
], 1 ≤ i < j ≤ n2,
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with

A =
∑

1≤k≤ℓ≤n

(

i − 1

k − 1

)(

j − i − 1

ℓ − k

)(

n2 − j

n − ℓ

)(

j − ℓ − 1

k − 1

)(

n(n − 1) + ℓ − j

n − k

)

.

Example 3.3 (Antithetic Sampling). Let π = {π1, . . . , πn} be a random permutation on {1, . . . , n}.

The antithetic estimator µ̂A as in (4) is in the form of (5) and the corresponding Bernoulli random

variables are given by

Ij =











1 if j ∈ {n(i − 1) + πi : i = 1 . . . , n}

0 otherwise
, j = 1, . . . , n2,

with

pij =























0 if ⌈ i
n
⌉ = ⌈ j

n
⌉ and i 6≡ j (mod n)

0 if ⌈ i
n
⌉ 6= ⌈ j

n
⌉ and i ≡ j (mod n)

1
n(n−1) if ⌈ i

n
⌉ 6= ⌈ j

n
⌉ and i 6≡ j (mod n)

, 1 ≤ i < j ≤ n2.

We pursue with a Theorem and a Corollary regarding to the properties of the random estimators

µ̂ as in (5); the latter one giving simple and general sufficient condition for dominance results.

Theorem 3.1 The random estimator µ̂ as in (5) is unbiased, in estimating the population mean

µ, with

Var[µ̂] =
1

n2
{σ2 +

n2−1
∑

i=1

n2−1
∑

j=1

τijE[SiSj]} ≥
σ2

n2
,

where

τij = Cov[

i
∑

k=1

Ik,

j
∑

ℓ=1

Iℓ] =

i
∑

k=1

j
∑

ℓ=1

[pkℓ −
1

n2
] and Si = X(i+1) − X(i), i, j = 1, . . . , n2 − 1.

Proof. The expectation of µ̂ is given by

E[µ̂] = E[E[µ̂|X(1), . . . ,X(n2)]]

= E[X̄]

= µ.
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To obtain the variance of µ̂, we have

Var[µ̂] = Var[E[µ̂|X(1), . . . ,X(n2)]] + E[Var[µ̂|X(1), . . . ,X(n2)]]

= Var[X̄ ] +
1

n2
E[

n2
∑

i=1

n2
∑

j=1

(pij −
1

n2
)X(i)X(j)]

=
1

n2
{σ2 + E[

n2−1
∑

i=1

n2−1
∑

j=1

τijSiSj]}

≥
σ2

n2
,

and the inequality holds because Var[µ̂] − σ2

n2 = E[Var[µ̂|X(1), . . . ,X(n2)]] ≥ 0.

Corollary 3.2 If µ̂ and µ̂∗ are two random estimators, in the form of (5), such that τij ≥ τ∗
ij; for

all i, j = 1, . . . , n2 − 1; then Var[µ̂] ≥ Var[µ̂∗].

Proof. The proof is based on the fact that Si ≥ 0 for i = 1, . . . , n2 − 1.

We pursue with various applications of the above results.

Example 3.4 In this example we provide a new proof for superiority of µ̂A over µ̂S in estimating

the population mean in the spirit of Corollary 3.2. By virtue of Corollary 3.2, we only need to obtain

τAij and τSij corresponding to µ̂A and µ̂S and show that τAij ≤ τSij for all i, j = 1, . . . , n2 − 1. Let

i1 = ⌈
i

n
⌉, i2 = i − n(i1 − 1),

j1 = ⌈
j

n
⌉, j2 = j − n(j1 − 1).

We obtain

τSij =
1

n + 1
(i ∧ j)(1 −

i ∨ j

n2
),

τAij =











1
n2 (i2 ∧ j2)(n − (i2 ∨ j2)) if i1 = j1

− 1
n2(n−1)

(i2 ∧ j2)(n − (i2 ∨ j2)) if i1 < j1

.
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When 1 ≤ i1 < j1 ≤ n we have τAij ≤ 0 ≤ τSij. Assume that i1 = j1. In this case

τSij =
1

n2(n + 1)
[n(i1 − 1) + (i2 ∧ j2)][n(n − i1) + (n − (i2 ∨ j2))].

If i1 > (i2 ∧ j2) then [n(i1 − 1) + (i2 ∧ j2)] ≥ (n + 1)(i2 ∧ j2), and

[n(n − i1) + (n − (i2 ∨ j2))] ≥ (n − (i2 ∨ j2)).

So τSij ≥ τAij. If i1 ≤ (i2 ∧ j2) then [n(n − i1) + (n − (i2 ∨ j2))] ≥ (n + 1)(n − (i2 ∨ j2)), and

[n(i1 − 1) + (i2 ∧ j2)] ≥ (i2 ∧ j2).

So τSij ≥ τAij. Therefore, τSij ≥ τAij for all 1 ≤ i ≤ j ≤ n2 − 1.

In the reminding of this section, we discuss the problem of superiority of the antithetic sampling

over the ranked set sampling in estimating the population mean. First, the following Example

highlights the attractive feature of µ̂A in dominating µ̂R for n = 2. As we see in the next section,

this latter property of µ̂A leads us to introduce a new variation of the ranked set sampling and

correspondingly a new estimator, µ̂V , which outperforms µ̂R.

Example 3.5 . If n = 2 then

Var[µ̂R|X(1), . . . ,X(4)] − Var[µ̂A|X(1), . . . ,X(4)] =
1

24
[(X(2) − X(1))(X(4) − X(3))] ≥ 0.

In the following two Examples we consider the performance of µ̂A in comparison with µ̂R for

n = 3 and n = 4. Let T = (τij)i,j=1,...,n2−1. Note that for all n ≥ 2 we have

(TR − TA)ij = (TR − TA)ji = (TR − TA)n2−i,n2−j, i, j = 1, . . . , n2 − 1.

12



Example 3.6 . For n = 3, the comparison between µ̂A and µ̂R leads to

100(TR − TA) =















































0 0 3.57 10.12 2.38 −3.57 8.33 4.17

0 0 10.71 8.33 9.05 −4.29 1.19 8.33

3.57 10.71 21.43 10.71 2.86 −2.14 −4.29 −3.57

10.12 8.33 10.71 0 0 2.86 9.05 2.38

2.38 9.05 2.86 0 0 10.71 8.33 10.12

−3.57 −4.29 −2.14 2.86 10.71 21.43 10.71 3.57

8.33 1.19 −4.29 9.05 8.33 10.71 0 0

4.17 8.33 −3.57 2.38 10.12 3.57 0 0















































.

In particular,
∑

i,j∈{1,6}

(τRij − τAij)SiSj → −∞ when S6 = 1 and S1 → ∞.

Therefore, at this point, we cannot claim that Var[µ̂A] ≤ Var[µ̂R] for n = 3. On the other hand,

for Bernoulli(p) trials, SiSj = 0 if i 6= j and

Var[µ̂] =
pq

n2
+

n2−1
∑

k=1

τkkP[Binomial(n2, p) = n2 − k + 1].

We obtain that

Var[µ̂R] − Var[µ̂A]

Var[µ̂S ]
=

3 × 0.2143

pq
{P[Binomial(9, p) = 3] + P[Binomial(9, p) = 6]}

= 54(pq)2(1 − 3pq).

In this application we see that (pq)2(1 − 3pq) reaches its maximum when p = 1
3 and p = 2

3 .
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Example 3.7 . For n = 4, the comparison between µ̂A and µ̂R leads to

100(TR − TA)i=1,...,15,j=1,...,8 =





























































































0 0 1.43 4.07 7.71 3.85 0.64 −2.05

0 0 4.29 10.33 9.56 10.09 3, 38 −2.42

1.43 4.29 8.57 18.57 13.61 10.17 8.10 −1.12

4.07 10.33 18.57 28.57 19.60 12.22 6.34 1.86

7.71 9.56 13.61 19.60 10.62 7.71 6.34 6.48

3.85 10.09 10.17 12.22 7.71 4.80 7.99 12.73

0.64 3.38 8.10 6.34 6.34 7.99 11.19 20.57

−2.05 −2.42 −1.12 1.86 6.48 12.73 20.57 29.96

3.97 0.84 −0.97 −1.36 8.06 10.68 14.84 20.57

1.94 4.68 0.06 −3.43 2.66 10.11 10.68 12.73

0.09 0.63 1.82 −4.49 −1.48 2.66 8.06 6.48

−1.65 −3.10 −4.17 −4.68 −4.49 −3.43 −1.36 1.86

5.00 1.72 −1.38 −4.17 1.82 6.32 −0.97 −1.12

3.33 6.67 1.72 −3.10 6.33 4.68 8.39 −2.42

1.67 3.33 5.00 −1.65 0.09 1.94 3.97 −2.05





























































































Here again, τRii ≥ τAii for i = 1, . . . , 15. Therefore, Var(µ̂R) ≥ Var(µ̂A) for Bernoulli(p) trials.

4 A variation of ranked set sampling

In this section, following the optimal property of µ̂A in dominating µ̂R for n = 2, explored

in Example 3.5, we introduce another variation of the ranked set sampling and correspondingly

another estimator of the population mean called µ̂V which outperforms µ̂R. In fact, when n = 2,

µ̂V is the antithetic estimator. Let m1 = ⌊n
2 ⌋ and m2 = ⌈n

2 ⌉. To construct µ̂V we start with a

useful representation of the ranked set sampling estimator µ̂R. Note that µ̂R in (2) can be written

14



as follows

nµ̂R =

n
∑

i=1

Xi(i)

=











∑m1
k=1(Xk(k) + Xk+m2 (k+m2)) if n is even

∑m1
k=1(Xk(k) + Xk+m2 (k+m2)) + Xm2(m2) if n is odd

,

Or equivalently

µ̂R =
1

n

m2
∑

k=1

Zk, (6)

with Zk = (Xk(k) + Xk+m2 (k+m2)); k = 1, . . . ,m1. Now, we define our new proposed estimator as

µ̂V =
1

n

m2
∑

k=1

Vk, (7)

with

Vk =











(Xk(k) ∧ Xk+m2 (k)) + (Xk (k+m2) ∨ Xk+m2 (k+m2)) with probatility 1
2

(Xk(k) ∨ Xk+m2 (k)) + (Xk (k+m2) ∧ Xk+m2 (k+m2)) with probatility 1
2

,

and Vm2 = Xm2,(m2) if n is even.

We now are ready to pursue with the following key Theorem of this section regarding to the

optimal properties of µ̂V such as its superiority over µ̂R in estimating the population mean.

Theorem 4.1 The estimator µ̂V as in (7) is an unbiased estimator of the population mean and

Var(µ̂V ) ≤ Var(µ̂R).

Proof. First of all, note that

E[µ̂R] =
1

n

m2
∑

k=1

E[Zk],Var[µ̂R] =
1

n2

m2
∑

k=1

Var[Zk].

Similarly

E[µ̂V ] =
1

n

m2
∑

k=1

E[Vk],Var[µ̂V ] =
1

n2

m2
∑

k=1

Var[Vk].
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Let 1 ≤ ℓ1 < ℓ2 ≤ n, and define

Z = Xℓ1(ℓ1) + Xℓ2(ℓ2) V =











Xℓ1(ℓ1) ∧ Xℓ2(ℓ1) + Xℓ1(ℓ2) ∨ Xℓ2(ℓ2) with probatility 1
2

Xℓ1(ℓ1) ∨ Xℓ2(ℓ1) + Xℓ1(ℓ2) ∧ Xℓ2(ℓ2) with probatility 1
2

Now, consider the event Aijkl, 1 ≤ i < j < k < l ≤ n2, given by

{Rℓ1(ℓ1), Rℓ1(ℓ2), Rℓ2(ℓ1), Rℓ2(ℓ2)} = {i, j, k, l},

and assume that (i, j, k, l) is such that P[Aijkl] > 0. When the event Aijkl occurs it implies that

(Rℓ1(ℓ1) ∧ Rℓ2(ℓ2), Rℓ1(ℓ1) ∨ Rℓ2(ℓ2)) ∈ {(i, l), (j, k), (i, k), (j, l)}.

Since
(

(Rℓ1(ℓ1), Rℓ1(ℓ2)), (Rℓ2(ℓ1), Rℓ2(ℓ2))
)

and
(

(Rℓ2(ℓ1), Rℓ2(ℓ2)), (Rℓ1(ℓ1), Rℓ1(ℓ2))
)

have the same dis-

tribution we obtain that

P[(Rℓ1(ℓ1)∧Rℓ2(ℓ2), Rℓ1(ℓ1)∨Rℓ2(ℓ2)) = (i, l)|Aijkl] = P[(Rℓ1(ℓ1)∧Rℓ2(ℓ2), Rℓ1(ℓ1)∨Rℓ2(ℓ2)) = (j, k)|Aijkl].

Similarly

P[(Rℓ1(ℓ1)∧Rℓ2(ℓ2), Rℓ1(ℓ1)∨Rℓ2(ℓ2)) = (i, k)|Aijkl] = P[(Rℓ1(ℓ1)∧Rℓ2(ℓ2), Rℓ1(ℓ1)∨Rℓ2(ℓ2)) = (j, l)|Aijkl].

Let

αijkl = P[(Rℓ1(ℓ1) ∧ Rℓ2(ℓ2), Rℓ1(ℓ1) ∨ Rℓ2(ℓ2)) ∈ {(i, k), (j, l)}|Aijkl ],

µijkl =
X(i) + X(j) + X(k) + X(l)

2
.
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Conditionally on the event Aijkl we obtain that

Z =



































X(i) + X(l) with probability
(1−αijkl)

2

X(j) + X(k) with probability
(1−αijkl)

2

X(i) + X(k) with probability
αijkl

2

X(j) + X(l) with probability
αijkl

2

, V =











X(i) + X(l) with probability 1
2

X(j) + X(k) with probability 1
2

.

Now,

E[Z|Aijkl] = µijkl = E[V |Aijkl],

establishing the unbiasedness of µ̂V . Finally,

Var[Z|Aijkl] = (X(i) + X(l) − µijkl)
2(1 − αijkl) + (X(i) + X(k) − µijkl)

2αijkl

= (X(i) + X(l) − µijkl)
2 +

αijkl

2
(X(j) − X(i))(X(l) − X(k))

= Var[V |Aijkl] +
αijkl

2
(X(j) − X(i))(X(l) − X(k))

≥ Var[V |Aijkl].

5 Simulation study

In this section, we carry out a simulation study to compare numerically the performance of the

proposed estimators µ̂A and µ̂V with that of µ̂R. It has already been established, in Theorem (3.1),

that σ2

n2 is a lower bound for the variances of all these estimators. The aim is to reduce, as much

as possible, the gap between the variance of the proposed estimators and the lower bound σ2

n2 . For

this reason, given a distribution P and a sample size n, the comparison between an estimator µ̂

and µ̂R will be based on the measure Rn given by

Rn(P, µ̂) =
VarP (µ̂) − σ2

n2

VarP (µ̂R) − σ2

n2

.

In our simulation study we worked on four underlying distributions: the standard normal distribu-

tion N (0, 1), the exponential distribution Exp(1), the uniform distribution U(0, 1), and the Poisson

distribution Poisson(1).
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Figure 1: Simulated values of Rn(P, µ̂) for considered distributions: (a) Rn(P, µ̂V ) (b) Rn(P, µ̂A).

For a given sample size n, n ∈ {2, . . . 30}, and a given distribution P , Figure 1 displays the

simulated values of Rn(P, µ̂A) and Rn(P, µ̂V ) based on one million iterations for the considered

distributions. The simulations show that Rn(P, µ̂V ) varies a little bit with n for small values of n

and becomes more stable when n gets larger. Overall, the gab between VarP (µ̂R) and σ2

n2 has been

reduced by a factor of at least 10% using µ̂V .

On the other hand, the simulations indicate that µ̂A is always the best estimator. The theory

tells us that R2(P, µ̂A) ≤ 1 for all P . Moreover, the simulations indicate that Rn(P, µ̂A) decreases

in n when P is fixed. This behavior has been observed in all of the other simulations that we have

conducted so far. Perhaps Rn(P, µ̂A) ≤ 1 for all P , n ≥ 1.
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